Ethylene Process by Lummus Technology

To produce polymer-grade ethylene (99.95 vol%). Major byproducts are propylene (chemical or polymer-grade), a butadiene-rich C4 stream, C6 to C8 aromatics-rich pyrolysis gasoline and high-purity hydrogen.

Ethylene Process by Lummus Technology

Hydrocarbon feedstock is preheated and cracked in the presence of steam in tubular SRT (short residence time) pyrolysis furnaces (1). This approach features extremely high olefin yields, long runlength and mechanical integrity. The products exit the furnace at 1,500°F to 1,600°F and are rapidly quenched in the transfer line exchangers (2) that generate super high-pressure (SHP) steam. The latest generation furnace design is the SRT VII.

Furnace effluent, after quench, flows to the gasoline fractionator (3) where the heavy oil fraction is removed from the gasoline and lighter fraction (liquids cracking only). Further cooling of furnace effluents is accomplished by a direct water quench in the quench tower (4). Raw gas from the quench tower is compressed in a multistage centrifugal compressor (5) to greater than 500 psig. The compressed gas is then dried (6) and chilled. Hydrogen is recovered in the chilling train (7), which feeds the demethanizer (8). The demethanizer operates at about 100 psia, providing increased energy efficiency. The bottoms from the demethanizer go to the deethanizer (9).

Acetylene in the deethanizer overhead is hydrogenated (10) or recovered. The ethylene-ethane stream is fractionated (11) and polymergrade ethylene is recovered. Ethane leaving the bottom of the ethylene fractionator is recycled and cracked to extinction.

The deethanizer bottoms and condensate stripper bottoms from the charge compression system are depropanized (12). Methylacetylene and propadiene are hydrogenated in the depropanizer using CDHydro catalytic distillation hydrogenation technology. The depropanizer bottoms is separated into mixed C4 and light gasoline streams (14). Polymer-grade propylene is recovered in a propylene fractionator (13).

A revised flow scheme eliminates ~25% of the equipment from this conventional flowsheet. It uses CDHydro hydrogenation for the selective hydrogenation of C2 through C4 acetylenes and dienes in a single tower; reduces the cracked-gas discharge pressure to 250 psig; uses a single refrigeration system to replace the three separate systems; and applies metathesis to produce up to 1/3 of the propylene product catalytically rather than by thermal cracking, thereby lowering energy consumption by ~15%.

Energy consumption: Energy consumptions are 3,300 kcal/kg of ethylene produced for ethane cracking and 5,000 kcal/kg of ethylene for naphtha feedstocks. Energy consumption can be as low as 4,000 kcal/kg of ethylene for naphtha feedstocks with gas turbine integration. As noted above, the new flow scheme reduces energy consumption by 14%.

Licensor: Lummus Technology

Leave a Reply

Your email address will not be published. Required fields are marked *